Snow avalanche detection in SAR images using CNNs

Markus Eckerstorfer

Per Egil Kummervold Filippo M. Bianchi Eirik Malnes

Avalanche risk assessment critically depends on knowledge of spatio-temporal avalanche activity

Avalanche debris reflects more energy to the satellite than undisturbed smooth snow.

Sentinel-1 SAR satellites

All weather conditions

All light conditions

Free SAR data

Consistent monitoring

Near-real time data

Detection of medium sized avalanches

We use temporal change detection, segmentation and filtering to automatically detect avalanches in S1 images

Detection hard limit is reached!

PODs: 82 % and 55.7 %

FARs: 26.4 % and 13.8 %

(compared to manual interpretation)

Putting some *magic sauce* over the Sentinel-1 images might increase our detection sensitivity

- Labeled dataset available
- Transfer learning increases size of dataset
- CNNs excel at image classification
- Auxiliary data as input layers are possible

We trained two different CNNs on a labeled dataset of manually interpreted avalanches

Using CNNs, sensitivities consistently over 90 % were achieved

Further increase of sensitivity was achieved using U-net architecture as segmentation network

Complete avalanche records allow for exploring the causal relationship of activity with triggering factors

ML and our complete avalanche activity dataset will be used for automatic avalanche forecasting

Similar CNN architectures are also used for oil spill detection in SAR images

Category	Accuracy
Category	70.0 %
Patch shape	82.5~%
Linear shape	77.5 %
Angular shape	94.5~%
Weathered attribute	72.1~%
Tail attribute	79.2~%
Droplets attribute	99.2~%
Winding attribute	95.5~%
Feathered attribute	97.5~%
Outline	93.8 %
Texture	55.4~%
Contrast	61.3 %
Edge	63.8 %

Bianchi, 2019

Remote sensing produces big data and is in need of various ML techniques for analysis

