THE HOUSEHOLD SECTOR IN DSGE MODELS Ivan Frankovic, May 25th 2018 # SIGNIFICANCE OF THE HOUSEHOLD SECTOR #### Mechanisms - Determines the response of consumption in DSGE models (50% Consumption-to-GDP share in Norway) - Important in the determination of wages and (un)employment - Numerous fiscal policy mechanisms operate through households #### Modeling approaches - Failure of the standard household modeling approach (representative agent) - Large diversity of other possible modeling approaches # STANDARD MODELING APPROACH: THE REPRESENTATIVE AGENT - Agents in the model follow optimal plans: - Maximize lifetime expected utility subject to a budget constraint - Lifetime is infinite $$U = E_o \sum_{t=0}^{\infty} \beta^t u(C_t, N_t)$$ $$C_t + I_t = (1 - \tau_t)Y_t + TR_t$$ Baxter and King (1993) - Consider increase in government expenditures - Present value of household tax liabilities increases (irrespective of financing type) Negative wealth effect: Households feel poorer - → Consumption and leisure decline - Three problems - 1. Consumption declines after fiscal stimulus - 2. Financing type does not matter (Ricardian equivalence) - 3. Consumption follows Euler equation # 1. FISCAL EFFECTS — EMPIRICAL EVIDENCE - Regardless of identification approach, VAR studies report an increase in output as a result of a positive government shock → in line with rep. agent framework - Evidence on the response of consumption are mixed. However the literature seems to assign more credibility to studies finding a **positive response of consumption**. - \rightarrow in conflict with the rep. agent framework - → Consumption Puzzle (see e.g. Hebous 2011) # 2. RICARDIAN EQUIVALENCE - In rep. agent models: Ricardian Equivalence holds - Definition by Barro (1974): "fiscal effects involving changes in the relative amounts of tax and debt finance for a given amount of public expenditure would have no effect on aggregate demand, interest rates, and capital formation" - However timing of tax and debt finance matters in real world - Solving consumption puzzle ≠ breaking Ricardian Equivalence . # 3. EULER EQUATION Euler Equation for the rep. agent problem $$\frac{C_{t+1}}{C_t} = \beta R_t$$ Consumption change over time is governed by real interest rate: • Higher interest rate \rightarrow Consumption is postponed to the future However, Euler equation does not hold empirically (Canzoneri et al. 2007) Graph: Federal Funds Rate, Interest Rate implied by Euler equation -> Correlation is negative # NON-SEPARABLE UTILITY FUNCTION • Utility function: additive-separable vs. non-separable: $$u(C_t, N_t) = f_1(C_t) + f_2(N_t) = \frac{C_t^{1-\sigma}}{1-\sigma} - \frac{N_t^{1+\psi}}{1+\psi}$$ $$u(C_t, N_t) = f(C_t, N_t) = \frac{1}{1-\sigma} \left(C_t - \frac{N_t^{1+\psi}}{1+\psi} \right)^{1-\sigma}$$ Consumption puzzle can be resolved within representative agent framework when non-separable utility function is used (Linnemann 2006, Bilbiie 2008/10, Monacelli and Perotti 2008/10) - · Basic intuition for non-separable util. fn.: - Fiscal spending induces a negative wealth effect, hours supplied increase - If U_{c,h} = 0 (add-separable), marginal utility of consumption remains unchanged if hours increase - $^{\bullet}$ If $U_{c,h} \geq 0$ (non-separable) , marginal utility of consumption increases if hours increase - In NK DSGE models labor supply increases due to increase in real wages - → Marg. Utility of consumption increases - \rightarrow Consumption increases , # NON-SEPARABLE UTILITY FUNCTION — FISCAL **POLICY** Monacelli and Perotti 2008 overcome consumption puzzle using non-separable utility function (where wealth effect on labor supply is very weak) - · Ricardian Equivalence still holds - Technical "story" to why consumption increases after fiscal expansion # TWO AGENT NEW KEYNSIAN MODELS (TANK) 11 # TWO AGENT NK MODEL - Include two types of households - 1. Rep. agent households as in the standard approach - 2. Rule-of-thumb (RoT, aka Hand-to-Mouth) households consuming all their current income: $$P_t C_t^r = W_t P_t N_t^r - P_t T_t^r$$ Consumption Income net of taxation Gali et al. (2007) interpretation of RoT: myopia, lack of access to capital markets, ignorance of intertemporal trading opportunities (Log-lin.) aggregate consumption equation then becomes $$c_{t} = \Theta_{n} \ n_{t} - \Theta_{\tau} \ t_{t}^{r} - \sigma \sum_{k=0}^{\infty} E_{t} \{ r_{t+k} - \pi_{t+k+1} \}$$ Component stemming from RoT households: - Term's importance increases with the share of RoT - depends positively on labor supply and negatively on taxes Component stemming from rep. agent - Term's importance decreases with the share of RoT - Permanent income theory # TANK II #### TANK DSGE Model overcomes Ricardian equivalence; solves the consumption puzzle for high enough share of RoT households; improves fit of Euler consumption equation #### Drawback: Empirical conflicts - Empirical studies usually find a share of 30 % behaving in RoT fashion (Kaplan and Violante 2005) - Estimating the RoT share within DSGE Models also yields around 30% (Coenen and Straub 2005) Potential improvement by Lopez-Salido and Rabani (2007): - RoT households and non-separable utility function reinforce each other with respect to overcoming the consumption puzzle - Non-separable utility function decreases the estimated share of RoT households and model fit improves 13 # HETEROGENEOUS AGENT NEW KEYNESIAN MODELS (HANK) ## TWO ASSET MODEL #### Kaplan and Violante (2014) Develop model with idiosyncratic earnings and two assets Individual income history generates wealth distribution in the model - Individual with low level of liquid assets have high marginal propensity to consume out of transitory income (current consumption tracks current income) - Holds also for those with high level of illiquid assets (Wealthy Hand-to-Mouth) - Those wealthy Hand-to-mouth agents do not use illiquid assets due to transaction cost → no consumption smoothing, permanent income hypothesis breaks down # FAGERENG, HOLM AND NATVIK (2016) Figure 4: Heterogeneous consumption responses. Quartiles of liquid and net illiquid assets Notes: Controls include time-fixed effects, income $_{t-1}$, age, age², family size, family size² and no. of children under 18. Estimation method: OLS. Total N: 266,263. Those with low level of liquid assets exhibit high MPC irrespective of the level of illiquid assets! # CHALLENGES OF THE HANK FRAMEWORK - HANK framework is mathematically and technically much more involved - HANK framework potentially in conflict with other important model components (wage-setting) - ullet Operation on frontier of economic science ullet fewer resources to rely on, higher operational risk for the modeling project - · Higher analytical burden on model maintainers and users - Higher computational burden affects feasibility of estimation # COLLATERAL CONSTRAINTS # COLLATERAL-CONSTRAINED HOUSEHOLDS Model economy populated by patient and impatient households (Kiyotaki and Moore 1997, lacoviello 2005) - Utility derived from consumption, leisure and housing stock - Housing stock also serves as store of wealth against which can be borrowed - Patient households save \rightarrow they lend to borrowers and own production capital - Impatient households borrow, using housing as collateral - Collateral constraint can be always binding -> Individuals spend whole current income (partly on housing to store wealth) - OR Collateral constraint can be occasionally binding # COLLATERAL-CONSTRAINED HOUSEHOLDS AND FISCAL POLICY Articles by lacoviello and co-authors do not look at fiscal policy, however: - Plattimur (2016) / Andres et al. (2015, 2017) show fiscal expansion is particularly effective when collateral constraints are met - When collateral constraints are met, invididuals consume less than they would if they could borrow more; Higher disposable income will result in higher consumption (similar to RoT households) - When collateral constraints are slack, higher disposable income will not affect the optimal level of consumption strongly - Possible to combine Ricardian, RoT households and collateral-constrained household in one model (QUEST III, Andres et al. 2017) - However, Rule-of-Thumb households response to fiscal expansion much higher than for collateral constrained - Drawbacks: - Cannot overcome the consumption puzzle - Effect of fiscal policy is sensitive to form of utility function (Bermpeoglou 2015) 2 ### "HANK — LITE APPROACH" - Andres et al. (2017) present a model with 6 types of households - Ricardian households - poor and wealthy HtM agents - highly and weakly leveraged borrowers - indebted households - Shares are identified using US micro data - captures heterogeneity across households with respect to balance sheets and MPCs - successfully breaks Ricardian Equivalence and solves consumption puzzle - No aggregate consumption equation However, consumption tracks income for some household types - Allows for distributional analysis (wealth inequality) - Technically less involved than HANK ### PERPETUAL YOUTH - Individuals have a constant probability to die - Financial wealth is discounted at the market interest rate; Human wealth is discounted at the market interest rate + mortality rate - Agents thus discount future tax liabilities at a higher rate than the market interest rate because they attach a significant probability to not becoming responsible for them - successfully overcomes the consumption puzzle and Ricardian equivalence, improves Euler equation #### Drawbacks - Results of PY framework very similar to simpler TANK framework (Kumhof and Laxton 2007, 2009) - Constant probability to die needs to be large (around 15 years of Life expectancy); reinterpretation as planning horizon problematic due to assumption of annuity markets 2 # REALISTIC OVERLAPPING GENERATIONS - Difference to Perpetual Youth: Mortality rate is not constant - Not much literature on DSGE models and overlapping generations - If so, studies have a very long-term focus (and are deterministic) - · Analysis of long-run budget sustainability, demographic change, pension systems - Danish project DREAM attempts combining OLG with DSGE components # SUPERFICIAL AND DEEP HABITS 2 # SUPERFICIAL HABITS Utility from consumption in period t depends on consumption in period t-1 $$u(C_t, N_t) = \frac{C_t - hC_{t-1}}{1 - \sigma} - \frac{N_t^{1+\psi}}{1+\psi}$$ - Individuals now smooth - not only the level of consumption across periods - but also the change of consumption across periods - Superficial habits do not break Ricardian equivalence, nor solve the consumption puzzle, nor improve fit of Euler equation Response of consumption to shocks is then hump-shaped with peak response several quarters after the innovation \rightarrow more in line with empirical responses # **DEEP HABITS** - Continuum of differentiated goods in the economy - Habits are formed for each differentiated good separately - Firms take into account that today's price decisions will affect future demand - Firms reduce markups to build customer base when incomes are high / aggregate demand is high Model can overcome consumption puzzle (Ravn et al. 2006, Zubairy 2010 / 2014) However, Jacob (2015): consumption multiplier becomes very small for realistic values of price stickiness (stickiness prevents firms to exploit habits) 2 # OTHER APPROACHES ## PUBLIC — PRIVATE COMPLEMENTARITY Consumer preferences depend on government spending (Bouakez and Rebei 2007) $$\tilde{C}_t = \left[\phi C_t^{(\nu-1)/\nu} + (1-\phi)G_t^{(\nu-1)/\nu}\right]^{\nu/(\nu-1)}$$ - if private and public consumption are complements, government spending increases the marginal utility of consumption \rightarrow consumption possibly rises - used by Swedish policy analysis model (KI) - Problem: Difficult to estimate complementarity 3 # IMPROVING THE FIT OF EULER EQUATION — 1 In Benes et al. (2014) agents face an ad-hoc penalty cost for deviations of consumption from current income $$D_{t} + P_{K,t} \sum K_{t}^{i} - \sum L_{t}^{i} - R_{t-1}D_{t-1} - R_{K,t}P_{K,t-1}\sum K_{t-1}^{i} + \sum R_{L,t-1}^{i}L_{t-1}^{i} - W_{t}N_{t}\left(1 - \frac{1}{2}\xi_{W}\Omega_{W,t}^{2}\right) + \underbrace{P_{C,t}C_{t}\left(1 + \frac{1}{2}\xi_{C}\Omega_{C,t}^{2}\right)}_{Consumption with current income effect} + P_{t}I_{t}\left(1 + \frac{1}{2}\xi_{I}\Omega_{I,t}^{2}\right) - P_{K,t}I_{t} - \bar{\Gamma}_{t} = 0,$$ Penalty cost enters aggregate consumption equation -> by varying penalty term, consumption and current income can be linked to each other to an arbitrarily high degree # IMPROVING THE FIT OF EULER EQUATION -2 Following the Danish DREAM Project: Introduce banking sector #### Household - earn a rate of return lower than the interbank rate for positive assets (deposits) - for negative assets (loans), the bank charges interest higher than the interbank rate - ullet The larger this interest spread ullet The less attractive is consumption smoothing ullet Consumption tracks current income more closely relative to what Euler equation implies 3 # SYNTHESIS — WHICH APPROACH TO CHOSE? | | Ricardian
Equivalence | Improved
Euler
Equation | Consumption puzzle solved | Analytical
burden | Comments | |-------------------------|--------------------------|-------------------------------|---------------------------|----------------------|---| | Representative
Agent | Yes | No | No | Low | - at odds with empirical findings
- Only useful as starting point | | Non-separable utility | Yes | Yes | Yes | Low -
Medium | Counter-intuitive, technical story However, could be productively combined with other modeling approaches | | TANK | No | Yes | Yes | Low-
Medium | Attractive due to simplicity Solves all three issues In conflict with Data / Story partly flawed | | HANK | No | Yes | Yes | High | Allows analysis of inequality More realistic "story" High mathematical and technical challenges | | HANK lite | No | Yes | Yes | Medium | Helps overcome calibration issues regarding TANK Introduces rich heterogeneity while technical requirements are much lower relative to HANK Fiscal shock effects depend on utility form | | Perpetual Youth | No | Yes | Yes | Medium | Analytical burden higher than with TANK Story flawed (time horizon vs. death) | | Deep Habits | Yes | No | Yes | Medium | Story is quite involved, but empirically supported Problematic with sticky prices | # REFERENCES ## **REFERENCES** Acari, G., & Rarkin, N. (2007). Perpetual youth and endogenous labor supply: A problem and a possible solution. Journal of Macroeconomics, 29(4), 708–723. https://doi.org/10.1016/j.jmacro.2006.03.001 Barro, R. J. (1974). Are Covernment Bonds Net Wealth? Journal of Political Economy, 28(30), 1075–1117. Retrieved from http://www.iptor.org/stoble/1830663 Babba, R. A. (2007). Rev. (2007). Polity in General Guildhouth. The American Economic Reviews, 28(3), 313–334. Retrieved from https://www.iptor.org/stoble/2117521 Bibbio, F. (2017). The New Keynesian Cross Understanding Monetary Policy with Hand-to-Month Households (CPR Discussion Paper No. 1) 1997. Retrieved from https://econograpers.pee.corg/paper/cprepript/911993/htm Bibbio, F. (2019). Noneepprotibe Preferences, Frisch Objet Vizules, and Herican Goods. Journal of Money, Credit and Sanking, 41(2), 434–450. https://doi.org/10.1111/j.11538-4616.2009.00213.x Bibbio, F. (2010). Noneepprotibe Preferences, Frisch Clobor Supply, and the Consumption Multiplier of Government Spending Cno. Solution to a Facility of Policy Pazzle. Journal of Money, Credit and Sonking, 43(1), 221–231. https://doi.org/10.1117/j.11548-4616.2009.00213.x imps; / Joscong/ (U.1111/): 1356-4410.2010.0003 ZX. Imps; / Joscong/ (U.1111/): 1356-4410.0003 (U.11111/): 1356-4410.0003 ZX. https://doi.org/10.1016/i.im eco.2006.09.001 imps; / gearding / (LL) 10 / jumpineses.2000.07/001. Gradio, E. (1971) The dynamics of a small open economy in response to monetary, fiscal, and productivity shocks. Journal of Monetary Economics, 28(3), 411–434. https://doi.org/10.1016/0304-3923/91/90033-K Cenena, O., & Straub, B. (2005), Non-Ricardian Households and Fiscal Policy in an Estimated DSG Model of the Euro Area (Compiling in Economics and Finance 2005). Reprieved from https://ideas.repec.org/p/sce/scedf5/11 Cerentin, O., Meris, A., & Maller, O., 12(2011). Read Similarius with Spending weersold. The Review of Economics and Stratistics, 94(4), 878–895. https://doi.org/10.1101/2/REST_compilings/ Deborolo, D., & Gell, J. (2017). Monetary Policy with Heterogeneous Agents: Insights from TANK models. Gradio, J., Ly, Dev. Saldo, J., D., & Vallet, J. (2007). Understanding the Effects of Government Spending on Consumption. Journal of the European Economic Association, 5(1), 227–270. https://doi.org/10.1102/JEEA.2007.5.1.227 Gall, J., López-Sallód, J. D., & Vallés, J. (2007). Understanding the Effects of Covernment Spending an Consumption. Journal of the European Economic Association, 5(1), 227–270. https://doi.org/10.1162/JEA. Giorjo, G. D., Nishkó, S., & Trafficantos, G. (2015). Government spending and the exchange roth (Working Paper), Retrieved from https://descrepcorg/10/acspeper/04-15.html Gourincha, P.-O., & Parker, J. A. (2002). Consumption over the Life Cycle. Econometric, 70(1), 47–89. Retrieved from http://www.jator.org/stable/2692163 Gourincha, P.-O., & Parker, J. A. (2002). Consumption over the Life Cycle. Econometric, 70(1), 47–89. Retrieved from http://www.jator.org/stable/2692163 Gourincha, P.-O., & Parker, J. A. (2002). Consumption over the Life Cycle. Econometric symmetria. Journal of Monetory Economics, 90(3), 90(4), 9 Kiyotoki, N., & Moore, J. (1997). Geoffice Special Special Community, 105(2), 211–248. https://doi. Kiyotoki, N., & Moore, J. (1997). Geoffice Special Special Community, 105(2), 211–248. https://doi. Kormillistina, A., & Zubairy, S. (2015). Propagation Mechanisms for Government Spending Shocks: A Boyesian Comparison (EcoMod2015 No. 8646). Retrieved from https://ec normanna, n., a. zubarry, s. (2010), Propagation Mechanisms for Government Spending Shocks a Bayesian Comparison (EcoNod/2015 No. 8846). Retrieved from https://ecorpapers.repec.org/paper Monacelli, T. (2009). New Keynesian madels, durable pooks, and collatered constraints. Journal of Monestery Economies, 56(2), 242–254. https://doi.org/10.1016/j.imnecc.2008.09.013 Monacelli, T., & Perotti, R. (2008). Fiscal Policy, Wealth Effects, and Markups (No. 14584). https://doi.org/10.3386/w14584 Monacelli, T., & Perotti, R. (2010). Fiscal Policy, the Real Exchange Rote and Traded Goods*. The Economic Journal, 12054d, 1877–461. https://doi.org/10.1111/j.1468-0297.2010.03386.w MULTIMOO Monk III-lim-Ecc or Dynamic and Steady-Stote Models, OP 164 - Table of Contents, Inc.), Ret intered December 12, 2017, from https://www.imforajostermal/pubs/tif/pa/pol/4/index.htm Niticls, S. (2012). Monetary policy and stock-price dynamics in a DSGE framework. Journal of Macroeconomics, 34(1), 126–146. https://doi.org/10.1016/j.jmacro.2011.09.008 Niticls, S. (2010). Opinial Monetary policy and Francial Solitify in a Non-Recording Procurse Frances American Frances Frances American (1451, 1751-1852). https://doi.org/10.1016/j.jmacro.2011.09.008 Natics, S. (2012.) Monetary policy and stock-price dynamics in a DSCE framework. Journal of Macroeconomics, 34(1), 126–146. https://doi.org/10.1016/j.macro.2011.JV.008 Natics, S. (2016.) Opiniand Monetary Policy and Financial Stability in a Non-Kierdorian Economy, Journal of the European Economic Macadisorian, 14(5), 1223–1252. https://doi.org/10.1111/jeea.12182 Piergollini, A. (2006). Real Bolance Effects and Monetary Policy. Economic Inquiry, 44(3), 467–511. https://doi.org/10.1003/e/db/Q29 Rebonal, P. & Lope-Sadio, D. (2006). Government Spending and Coussipation-Hours Preferences (Pol. D 10117038). Robestey, PNY. Social Science Research Network. Berrieved from https://papers.srm.com/abstract=1011703 Rento, M., Roeper, W., & Veld, J. in Y. (2009). QuEST III. An estimated open-economy DSGE model of the eava area with fiscal and monetary policy. Economic Modelling, 26(1), 222–233. https://doi.org/10.1016/j.moneco.2012.00200 Rom, M. O., Schmith-Grobé, S., Uribe, M., & Usukuk, L. (2010). Deep habits and the dynamic effects of monetary policy shocks. Journal of the Japanese and International Economies, 24(2), 236–258. https://doi.org/10.1016/j.ijje.2009.12.002 Ravn, M., Schmitt-Grohé, S., & Uribe, M. (2006). Deep Habits. The Review of Economic Studies, 73(1), 195–218. Retrieved from http://www.jstor.org/stable/3700622 Ravn, M., Schn Wegmeeller, P. (2014). Utility functions, fiscal shocks and the open economy - In the search of a positive consumption multiplier (Diskussionsschriften). Retrieved from https://econpapers.repec.org/paper/ubedpvwib/dp14073tm Zubairy, S. (2010). Explaining the Effects of Government Spending Shocks (MPRA Paper). Retrieved from https://decus-epec.org/p/pro/ purpops/2003.html Zubairy, S. (2010). Co. Piscal Multipliers: Estimates from an Medium Scale Depts Model. International Economic Review, 5(51), 169–195. https://doi.org/10.1111/jees.12045 37 # **APPENDIX** 38 # QUEST III — EXTENSION WITH CREDIT CONSTRAINED HOUSEHOLDS Consider three types of Households - 1. Ricardian Households - Liquidity-constrained households (aka rule-of-thumb, hand to mouth) - Credit-constrained households (aka collateral constraint) Fiscal multiplier of Model with 1 2 3 > Fiscal multiplier of Model with 1 2 > Fiscal multiplier of Model with 1 Assumption of Shares 1) 0.3 - 2) 0.4 - 3) 0.3 2 is based on estimates of RoT HH in Europe The remaining allocation between 1 and 3 is arbitrary and influences results directly Credit-constrained HH increase consumption on impact of fiscal policy shock (but less so than RoT). 39 # HETEROGENEOUS AGENT NEW KEYNESIAN MODELS Monetary Policy in HANK Models – Kaplan Moll Violante (2017) - Introduce into a traditional NK DSGE models (infinitely lived) households that have access to liquid and illiquid assets a la Kaplan & Violante (2014) - Important differences to RANK models arise when analyzing monetary policy effects - Intertemporal substitution effect: Matters strongly in RANK as the Euler equation directly links interest rate with aggregate consumption In HANK, HtM households are barely affected by interest rate change - II. General equilibrium effects: Rather small in RANK but most important in HANK - III. Fiscal policy response to monetary policy shock matters strongly in HANK ## PERPETUAL YOUTH — UTILITY FUNCTION Carton (2012) Aggregation among cohorts is intractable without restrictions on the utility function -> 2 Types $U(C, L) = (1 - \kappa) \log(C) + \kappa \log(\bar{L} - L)$ As used in Blanchard (1985), Kumhof & Laxton (2007/09), di Girgio et al. (2015) $$U(C, L) = \log(C - V[L])$$ Ascari & Rankin (2007) Allows for a decreasing labor endowment with age - Avoids negative labor supply for very old - Could potentially solve real exchange rate problem 41 # SUPERFICIAL HABITS Superficial Habits: Habits are formed at the composite good level $$E_o \sum_{t=0}^{\infty} \beta^t U(x_t^{c,j} - b^C s_{t-1}^C, h_t^j)$$ $$x_t^{c,j} = \left[\int_0^1 (c_{it}^j)^{1-\frac{1}{\eta}} di \right]^{1/(1-\frac{1}{\eta})}$$ $$\begin{split} s_t^C &= x_t^c \\ s_t^C &= \rho^c s_{t-1}^C + (1 - \rho^C) x_t^c \end{split}$$ Period utility function of composite consumption minus habit stock and hours Continuum of consumption goods $i \in [0,1]$ Composite consumption is CES aggregate across all differentiated consumption goods $i \in [0,1]$ ## **DEEP HABITS** Habits are formed at the single good type level Period utility function of composite consumption aood and hours $$E_0 \sum_{t=0}^{\infty} \beta^t U(x_t^{c,j}, h_t^j)$$ Continuum of consumption goods $i \in [0,1]$ $$x_t^{c,j} = \left[\int_0^1 (c_{it}^{j} - b^c s_{it-1}^C)^{1 - \frac{1}{\eta}} di \right]^{1/(1 - \frac{1}{\eta})}$$ Effective consumption of good i = actual consumption – habit stock for good i $$\begin{split} s_{it}^{C} &= c_{it} \\ s_{it}^{C} &= \rho^{c} s_{it-1}^{C} + (1 - \rho^{C}) c_{it} \end{split}$$ Composite consumption is CES aggregate across all differentiated consumption goods i \in [0,1] . # **COMPARING DEEP AND SUPERFICIAL HABITS** Deep Habits: Habits are formed at the single good level Superficial Habits: Habits are formed at the composite good level $$E_0 \sum_{t=0}^{\infty} \beta^t U(x_t^{c,j}, h_t^j)$$ $$E_o \sum_{t=0}^{\infty} \beta^t U(x_t^{c,j} - b^C s_{t-1}^C, h_t^j)$$ $$x_t^{c,j} = \left[\int_0^1 (c_{it}^j - b^c s_{it-1}^C)^{1 - \frac{1}{\eta}} di \right]^{1/(1 - \frac{1}{\eta})}$$ $$x_t^{c,j} = \left[\int_0^1 (c_{it}^j)^{1-\frac{1}{\eta}} di \right]^{1/(1-\frac{1}{\eta})}$$ $$\begin{aligned} s_{it}^{C} &= c_{it} \\ s_{it}^{C} &= \rho^{c} s_{it-1}^{C} + (1 - \rho^{C}) c_{it} \end{aligned}$$ $$\begin{aligned} s_t^C &= x_t^c \\ s_t^C &= \rho^c s_{t-1}^C + (1 - \rho^C) x_t^c \end{aligned}$$ # **DEEP HABITS** - Continuum of differentiated goods in the economy - Habits are formed for each differentiated good separately - Gives rise to the following consumption demand function Mechanism for fiscal expansion - Increase in aggregate demand increases the share of price-elastic component - Firms take into account that today's price decisions will affect future demand - Firms reduce markups to build customer base when aggregate demand is high - counter-cyclical markups